PHYS 101 Formulae

Vectors are in bold

General equations and constants:
Solution to quadratic:

$$
a x^{2}+b x+c=0 \rightarrow x=\left(-b \pm \sqrt{\left.\left(b^{2}-4 a c\right)\right) / 2 a}\right.
$$

Law of cosines:
Acceleration due to gravity:
$|a+b|^{2}=a^{2}+b^{2}+2 a b \cos (\theta)$
Gravitational constant:
$g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
Mass of the Earth :
$G=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg}^{2}$
Moment of inertia of a point mass:
$M_{E}=6.0 \times 10^{24} \mathrm{~kg}$
Moment of inertia of a sphere:
$I=m r^{2}$
Speed of sound in air at sea level:
Speed of light
$I=(2 / 5) \mathrm{mr}^{2}$
$\quad c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Threshold intensity of audible sound: $I_{0}=1.0 \times 10^{-12} \mathrm{~W} / \mathrm{m}^{2}$
Threshold pressure of audible sound:
Index of refraction of water:
$\mathrm{p}_{\mathrm{o}}=3.0 \times 10^{-5} \mathrm{~Pa}$
Index of refraction of glass:
$n=1.33$
$n=1.5$

Motion at constant a:

Reference frames:
Newton's $2^{\text {nd }}$ law:
Force of friction
Centripetal acceleration
Banked curve, frictionless surface:
Force of gravity:
Kepler's $3^{\text {rd }}$ law:
Work:
Kinetic energy:
Work-energy
Gravitational potential:
$v=v_{0}+a t$
$x=x_{0}+v_{0} t+\frac{1}{2} a t^{2}$
$v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)$
$v_{\text {aver }}=\left(v+v_{0}\right) / 2$
$v_{\text {in frame } A}=v_{\text {in frame }}+v_{B}$ in A
$F=m a=\Delta p / \Delta t$
$F_{\text {friction }}=\mu\left(\right.$ kinetic, static) F_{N}
$a=v^{2} / r$
$\tan \Theta=v^{2} /(r g)$
$F=G\left(m_{1} m_{2}\right) / r^{2}$
$T^{2} / r^{3}=4 \pi^{2} /(G M)$
$W=F \cdot d$
$K E=\frac{1}{2} m v^{2}$
$W_{\text {net }}=\Delta K E$
$P E_{\text {grav }}=m g h$
$P E_{\text {spring }}=\frac{1}{2} \quad k x^{2}$
$F=-k x$
power $=$ energy/time $=W / t=F \cdot v$
$P=m v$

Impulse:
Center of mass:
Linear and angular velocity:
Angular motion at constant α :

Torque:
Newton's second law for rotation:
Rotational kinetic energy
Rotational (angular) momentum:
Frequency/period relationship:
Period of SHM (spring):
Speed of object undergoing SHM:
Maximum acceleration:
Sinusoidal motion of SHM:
Pendulum SHM:
Wave speed, wavelength, frequency:
Speed of wave on a cord:
Intensity of wave:
Standing waves on string:
Reflection:
Refraction (waves):
Sound intensity (decibels)
Harmonics of open tubes:
Harmonics of closed tubes:
Beat frequency:
Doppler shift:
$\Delta p=F \Delta t$
$x_{C M}=\left(x_{A} m_{A}+x_{B} m_{B}+\ldots\right) /\left(m_{A}+m_{B}+\ldots\right)$
$\mathrm{v}=\mathrm{r} \omega$
$\omega=\omega_{0}+\alpha \dagger$
$\theta=\omega_{0} t+\frac{1}{2} \alpha t^{2}$
$\omega^{2}=\omega_{0}{ }^{2}+2 \alpha \Theta$
$\omega_{\text {aver }}=\left(\omega+\omega_{0}\right) / 2$
$\tau=F_{\perp} r$
$\tau=I \alpha \quad I=\Sigma m r^{2}$
$K E_{\text {rot }}=\frac{1}{2} I \omega^{2}$
$L=I \omega$
$f=1 / T$
$T=2 \pi \sqrt{(\mathrm{~m} / \mathrm{k})}$
$v= \pm v_{\max } J\left(1-x^{2} / A^{2}\right) \quad v_{\text {max }}=2 \pi A / T$
$a_{\text {max }}=(\mathrm{k} / \mathrm{m}) A$
$x=A \sin (2 \pi t / T)=A \sin (\omega t)$
$T=2 \pi \sqrt{(L / g)}$
$v=\lambda f$
$v=\int\left(F_{T} /[m / L]\right)$
$I=2 \pi^{2} v \rho f^{2} A^{2}$
$I=p^{2} /(2 v p)$
$\lambda_{n}=2 L / n$
$\Theta_{\text {inc }}=\Theta_{\text {ref }}$
$\mathrm{v}_{1} \sin \left(\theta_{2}\right)=\mathrm{v}_{2} \sin \left(\theta_{1}\right)$
$\beta=10 \log \left(I / I_{0}\right)=20 \log \left(P / P_{0}\right)$
$f_{n}=n f_{1}=n(v / 2 L) \quad$ for $n=1,2,3 \ldots$
$f_{n}=n f_{1}=n v / 4 L \quad$ for $n=1,3,5 .$.
(only odd harmonics)
$f_{b}=\left|f_{1}-f_{2}\right|$
$f^{\prime}=f\left[1 /\left\{1 \pm\left(v_{\text {source }} / v_{\text {wave }}\right)\right\}\right]$
(source moving away from(+)/towards(-) observer)
$f^{\prime}=f\left[1 \pm\left(v_{\text {obs }} / v_{\text {wave }}\right)\right]$
(observer moving towards(+)/away from(-) source)
Focal length of spherical mirror:
$f=r / 2$
Mirror and lens equation:
$1 / f=1 / d_{0}+1 / d_{i}$

Magnification:
Index of refraction:
Snell's law of refraction:
Critical angle for TIR:
Lens power:
Diffraction around object:
Constructive interference (2-slit):
Destructive interference (2-slit):
Single slit diffraction minima:
Diffraction spot size/resolution:

$$
m=h_{i} / h_{0}=-d_{i} / d_{0}
$$

$$
\mathrm{n}=\mathrm{c} / \mathrm{v}_{\text {light }}
$$

$$
n_{1} \sin \left(\Theta_{1}\right)=n_{2} \sin \left(\Theta_{2}\right)
$$

$$
\sin \left(\Theta_{c}\right)=n_{2} / n_{1}
$$

$$
P=1 / f
$$

$$
\Theta_{\text {diff }} \approx \lambda / D
$$

$$
d \sin (\Theta)=m \lambda \quad m=0,1,2 \ldots
$$

$$
d \sin (\Theta)=\left(m+\frac{1}{2}\right) \lambda \quad m=0,1,2 \ldots
$$

$\Theta=1.22 \lambda / D$
$D \sin (\Theta)=m \lambda \quad m=1,2,3 \ldots$ (not $0!$)

